

CANSOLV[®] SO₂ SCRUBBING SYSTEM

World Leading SO₂ Control Technology

CANSOLV TECHNOLOGIES INC.

www.cansolv.com

GANSOLV World Leading SO₂ Control Technology

<u>OVERVIEW</u>

Company History Cansolv SO₂ Scrubbing System Technology **7** Process Chemistry **7** Diamine Absorbent **7** Process Description Piloting Experience **Commercial Units** Refinery Applications

Cansolv World Leading SO₂ Control Technology

<u>COMPANY HISTORY</u>

- CANSOLV[®] SO₂ Scrubbing System invented in 1988 at Union Carbide
- Piloted 9 months at Suncor in 1991
- 75 MW demonstration plant project team mobilized in 1992
- UCC abandoned project in 1993, due to a change in corporate strategic focus
- Key employee buyout of technology in 1997

Cansoly World Leading SO₂ Control Technology

COMPANY HISTORY

- Technology optimization
- Demonstrated CANSOLV[®] SO₂ Scrubbing System
 technology in a dozen pilot plant campaigns in
 different applications
- Startup of three commercial units in 2002

CURRENT ACTIVITIES

- Cansolv SO₂ Control Process

 Engineering, License, Amine, Reclamation

 R&D
 - SO₂ process improvements
 - NOx and mercury control (pilot plant)
 - CO₂ capture with amine in oxidizing environment

GARSON World Leading SO₂ Control Technology

<u>CANSOLV[®] SO₂ Scrubbing System</u>

- A regenerable SO₂ absorption process
- Similar to H₂S/CO₂ amine treaters
- Uses conventional equipment
- Aqueous diamine solvent is highly selective for SO₂
- A very robust, easy to operate process
- Almost zero emissions at low cost
- Patented technology

Gansolv World Leading SO₂ Control Technology

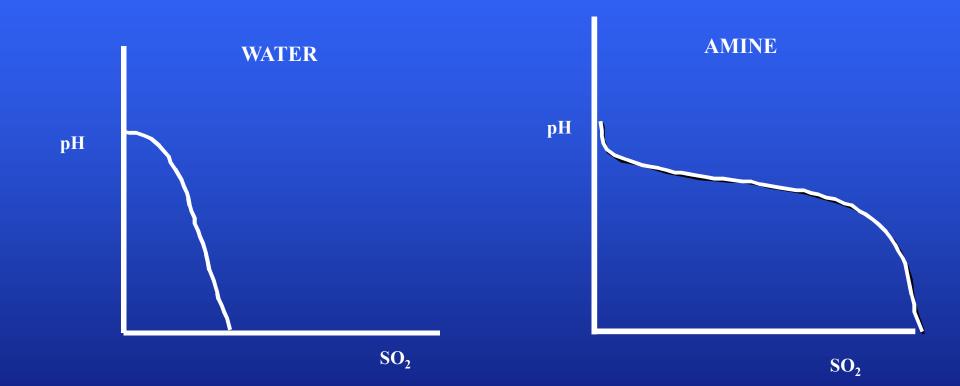
PROCESS CHEMISTRY

- Buffering provides high capacity for SO₂ absorption
- Proprietary solvent has the proper absorption/desorption strength
- Solvent amine is non-volatile since it is always in salt form
- Regeneration provides pure, water saturated SO₂ as byproduct

Gansolv World Leading SO₂ Control Technology

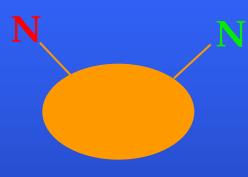
PROCESS CHEMISTRY

 $SO_{2} + H_{2}O \iff H^{+} + HSO_{3}^{-} (1)$ $HSO_{3}^{-} \iff H^{+} + SO_{3}^{2-} (2)$ $R_{1}R_{2}R_{3}N + H^{+} \iff R_{1}R_{2}R_{3}NH^{+} (3)$


Eqns. 1 + 2

Reversible hydration and ionization

Eqn. 3 The amine acts as a buffer Forms amine salts


Cansoly World Leading SO₂ Control Technology

PROCESS CHEMISTRY

Gansolv World Leading SO₂ Control Technology

DIAMINE ABSORBENT

FREE DIAMINE

N : Strongly basic amine functionality

- **N** : "Sorbing nitrogen"
- X⁻: Strong acid anion

HSO₃⁻: Absorbed SO₂

Cansoly World Leading SO₂ Control Technology

DIAMINE ABSORBENT

The unique diamine absorbent is the key to the CANSOLV® SO₂ Scrubbing System technology

The first amine group is always in salt form providing absorbent non-volatility

The second amine has the optimum strength for balanced absorption and regeneration

UNDER CONTROL MORE AND A CONTROL TECHNOLOGY World Leading SO₂ Control Technology

COMPARISON OF AMINES

CANSOLV PROCESS

- Diamine salt absorbent
- Absorbent non-volatile
- **7** 100% slip of CO₂
- > Stainless steel metallurgy
- Corrosion allowance minimal
- **7** No Fe S formation
- Only source of solids is feed gas
- **7** Filter rich amine stream

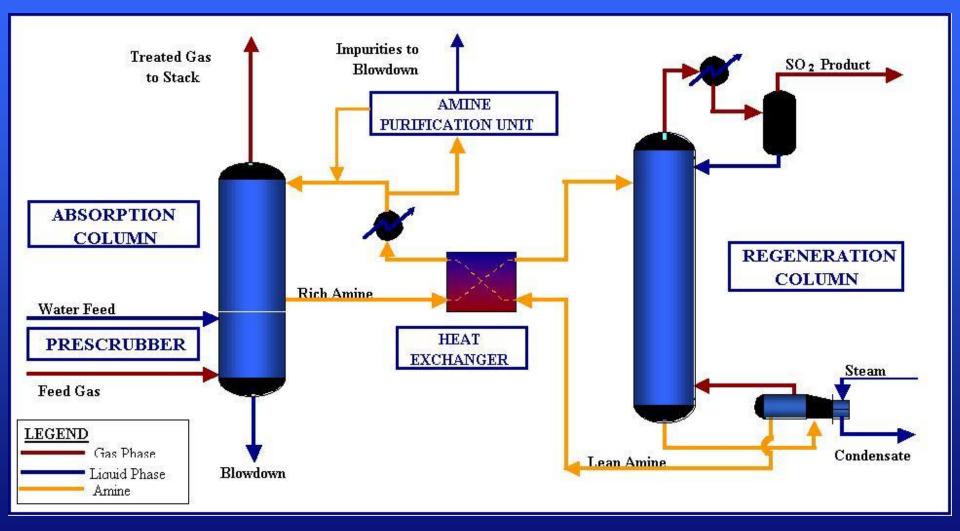
CONVENTIONAL AMINE

- 7 Conventional mono-amine
- **7** Amine volatile
- **7** Difficulty in slipping CO₂
- Carbon steel metallurgy
- **7** Corrosion allowance important
- **7** Fe S formation
- Fe S precipitation and scaling source of solids
- ↗ Filter lean amine stream

World Leading SO₂ Control Technology

COMPARISON OF AMINES

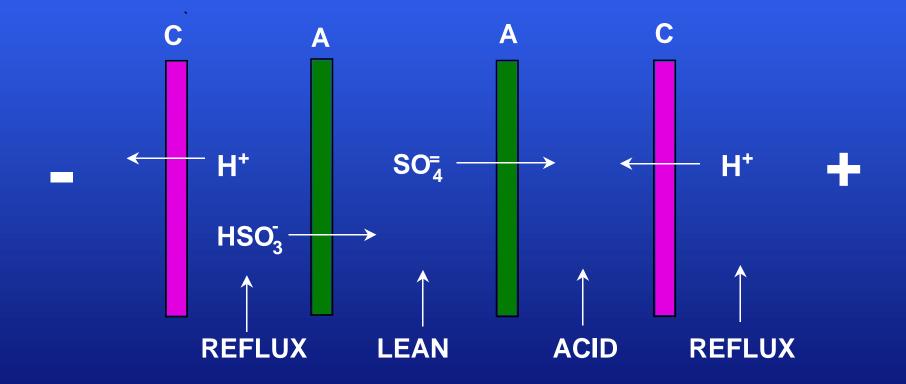
CANSOLV PROCESS


- 7 Rate of formation of HSS higher
- 7 Continuous reclaimer (ED)
- **Amine stable to O₂**
- Amine degradation lower by factor of 2 to 3
- Operation and control similar
- → Can achieve low (<10 ppmv) SO₂
- **对** Foaming not an issue

CONVENTIONAL AMINE

- 7 Low rate of HSS formation
- Reclaiming often ad-hoc
- Amine not stable when exposed to O₂
- **7** Amine degradation important
- **7** Operation and control similar
- Can achieve low ppmv H₂S but
 CO₂ can be a problem
- **7** Foaming can be a problem

Udnsolv World Leading SO₂ Control Technology


<u>CANSOLV[®] SYSTEM PFD</u>

Cansolv World Leading SO₂ Control Technology

PROCESS DESCRIPTION

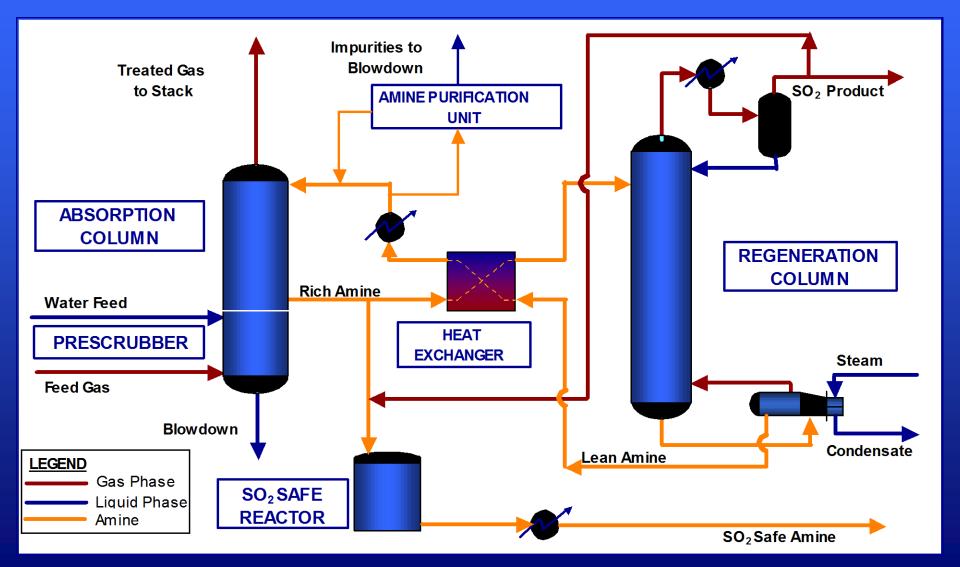
Electrodialysis Unit: 3-Loop Design

CANSOLV® SO₂ Scrubbing System Piloting Campaigns

DATE	APPLICATION	SO ₂ ppmv in	SO ₂ ppmv out	COMMENTS
Feb-Nov 1991	FGD	2,600	<100	Petroleum coke fired boiler
June 1998	Acid plant feed and tail gases	65,000 1,800	<100	
August 1998	Sulfite pulp mill	3,000-500,000		VOC contaminated Inlet SO ₂ swing
October 1998	Metal refining			SO2Safe Regeneratiom demonstration
May 1999	Incinerator + Claus tail gas	20,000	<100	Chlorides present
June 1999	Lead smelter	10,000	<100	High dust and tar levels

CANSOLV® SO₂ Scrubbing System Piloting Campaigns

DATE	APPLICATION	SO ₂ ppmv in	SO ₂ ppmv out	COMMENTS
October 1999	Acid plant feed gas	70,000-140,000	<100	SO ₂ recovery
Nov. 1999	Refinery	2,500	<100	Boiler FGD
Jan-Feb 2000	Refinery	5,500		Spent sulfuric acid recovery unit tail gas
April 2001	Sulphite Pulp Mill	15,000	<50	Recovery boiler flue gas
June 2002	Refinery	2,000	<20	Gasoline FGD; SO ₂ recovery
July 2002	FGD	2,400	<50	Bitumen fired boiler
Sept. 2003	Lead Smelter	7,000	<35	Chlorides present


Cansolv World Leading SO₂ Control Technology

- **Startup May 2002 at a zinc smelter in Quebec**
- SO₂SAFETM process
- Reduce hazard of SO₂ storage and transportation
- Dissolve SO₂ in high capacity amine solvent
- Limit release of gaseous SO₂ in event of leak or spill
- **Regenerate SO₂ in an automated unit**

World Leading SO₂ Control Technology

COMMERCIAL UNIT #1

Lansol

Udition Solution World Leading SO₂ Control Technology

COMMERCIAL UNIT #2

- Startup May 2002 at a chemical plant in Belgium
- **CANSOLV[®] SO₂ Scrubbing System**
 - Treat flue gas from an incinerator burning SRU unit tail gas and waste tar
 - **11,000** Nm³/hr at 14,300 ppmv SO₂ inlet
- Process cost less than conventional tail gas treating
- Operation of plant has been stable and better than design

Udition Solution World Leading SO₂ Control Technology

COMMERCIAL UNIT #2

Partial List of Performance Guarantees and Results

Performance Guarantees		Actual Performance		
SO ₂ in Treated Gas	\leq 350 mg/Nm ³ dry	240 mg/Nm ³ average 100-160 mg/Nm ³ optimized		
Steam Consumption	\leq 20 kg/kg SO ₂	 11 kg/kg SO₂ average to date; 7 kg/kg SO₂ optimized 		

- Unit availability 100%
- Current steam consumption 25% less than design
- **Degradation of the amine solvent is less than expected**
- **SO**₂ emissions less as low as 50 mg/Nm³ observed

Cansolv World Leading SO₂ Control Technology

Gansolv World Leading SO₂ Control Technology

- Startup September 2002 at an oil refinery in Los Angeles
- CANSOLV[®] SO₂ Scrubbing System
- Treats sulfuric acid plant tail gas
- 25,000 SCFM (40,000 Nm³/hr) at 0.3 to 0.5% SO₂
 inlet concentration
- **SO₂** emissions less than 10 ppmv, 30 mg/Nm³
- Currently operating at 150% of design

Cansolv World Leading SO₂ Control Technology

UDDE World Leading SO₂ Control Technology

<u>COMMERCIAL UNITS</u>

- CTI has demonstrated the successful startup of the 3 initial *CANSOLV® SO₂ Scrubbing System* commercial applications
- Commercial units exceeded expectations
 - **7** Cost
 - **7** Removal Efficiency
 - **7** Energy Consumption
 - **Amine solvent stability**
- **Range of commercial applications demonstrates the versatility of** *CANSOLV*[®]*SO*₂*Scrubbing System*

FCCU CO Boiler Flue Gas FCU CO Boiler Flue Gas SRU Tail Gas Unit Lead Smelter Off-Gas (Load Levelling)

Cansoly FCCU CO BOILER FLUE GAS

- Gas rate: 800,000 Nm³/hr
- SO₂ content: 1000 kg/hr
- Absorber diameter: 9 m
- Outlet SO₂ concentration less than
 25 ppmv
- Particulate removal important
- Liquid effluent to be minimized

Cansoly FCCU PROJECT DESIGN ISSUES

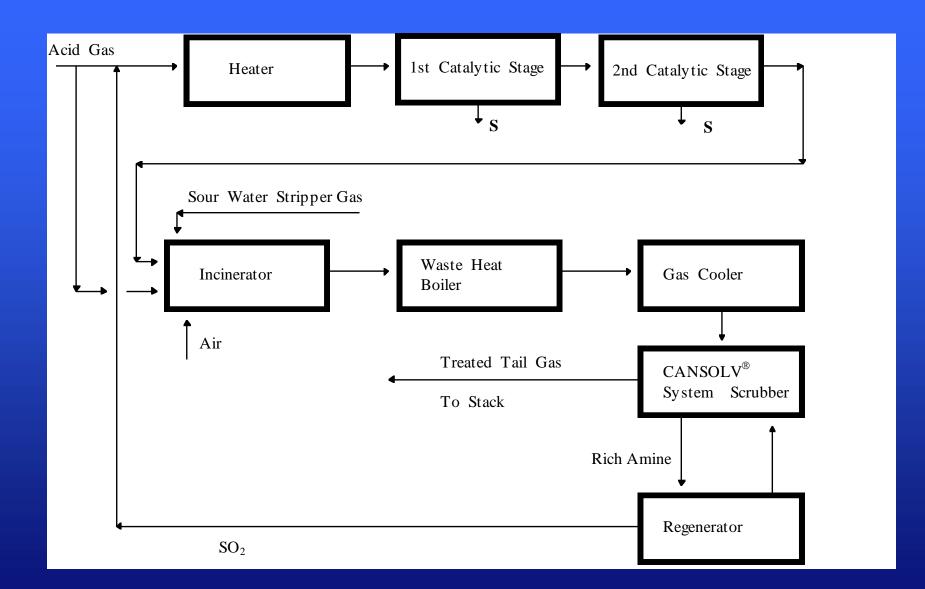
Reliability: 5 year run length **Total unit pressure drop: < 50'' WC** No amine carryover to treated gas **35** psig (2.3 Barg) steam to reboiler limiting regeneration pressure

- Open spray tower gas quench and particulate removal
- Cansolv Absorber (3 sections)
- Bottom wash section (grid packing)
- Absorption section (structured packing)
- Polishing caustic scrubber (structured)

Cansoly FCU CO BOILER FLUE GAS

- Gas rate: 400,000 Nm³/hr
- SO₂ content: 1500 kg/hr
- Absorber diameter: 7 m
- Outlet SO₂ concentration less than
 25 ppmv
- Particulate removal important
- Liquid effluent to be minimized

- **Objectives:**
 - Claus tail gas unit (100 tons/day)
 - Increase SRU capacity by 25%
 - Eliminate O₂ enrichment


- Gas rate: 19,000 Nm³/hr
- SO₂ content: 1200 kg/hr
- SO₂ inlet concentration 4.4%
- Outlet SO₂ concentration less than
 150 ppmv

Cansoly SRU Tail Gas Unit

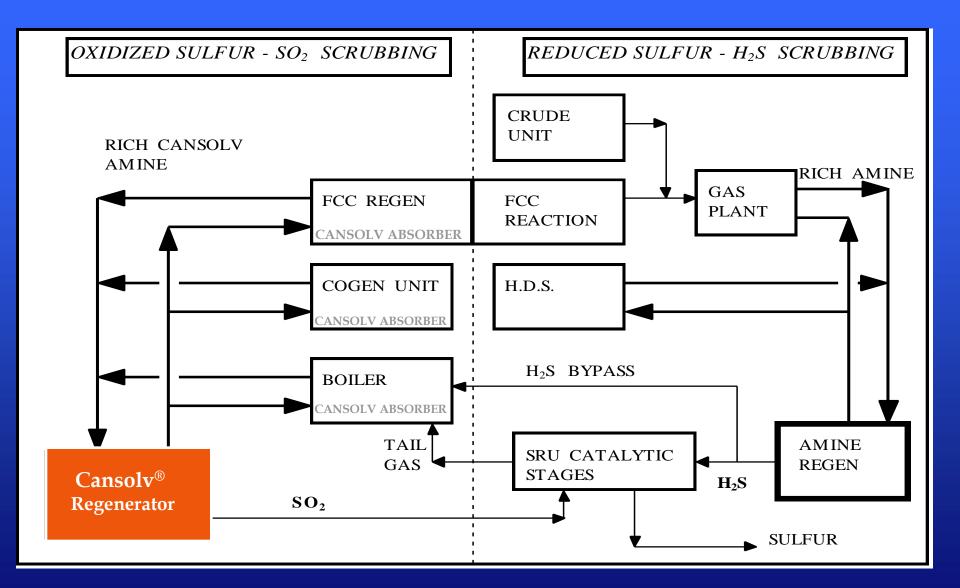
- 10% acid gas bypassed to tail gas incinerator
- Incinerator is fired with excess air to 1,200°F (650°C)
- Gas cooled in WHB to 600°F (315°C), quenched and cooled to 140°F(60°C) in prescrubber
- SO₂ feed concentration of 4%
- Results in a 25% capacity increase without O₂ enrichment
- No need for support fuel in tail gas incinerator

Cansolv

CANSOLV SRU

Cansoly Metallurgical Application

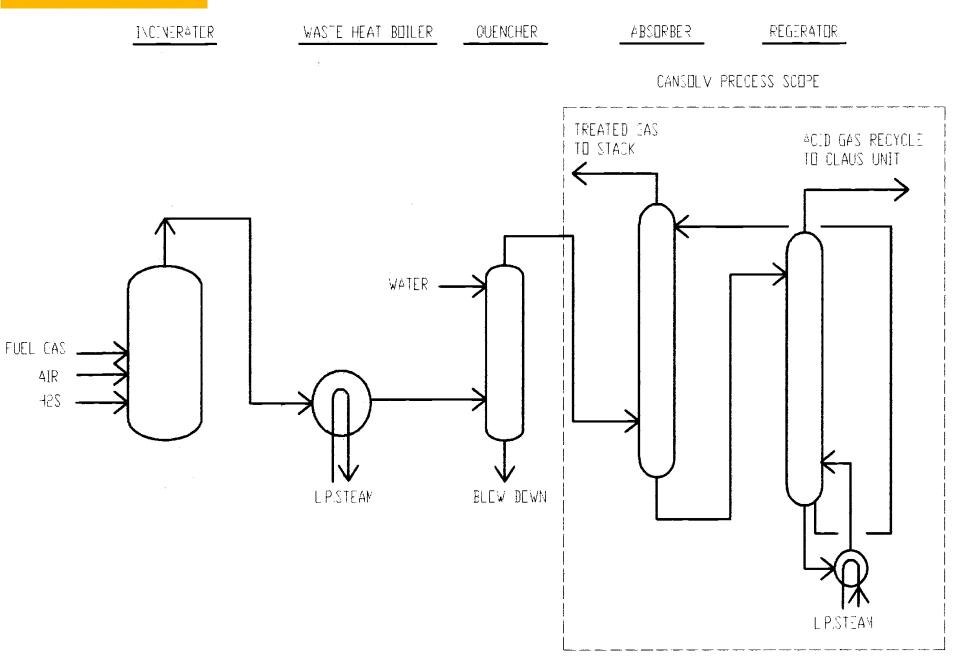
- Gas rate: 25,000 Nm³/hr
- SO₂ content: 2200 kg/hr
- SO₂ concentration 1000 ppmv to 14%
- Outlet SO₂ concentration less than100 ppmv
- Cansolv unit delivers constant SO₂
 feed to a sulphuric acid plant


APPLICATIONS

Refineries

- **7** SRU tail gas cleanup and capacity expansion
- **7** Power boiler, co-generation FGD
- **7** FCCU (CO boiler) tail gas
- **7** Fluid Coker CO boiler flue gas
- **7** Steam boiler and fired heater FGD
- Total sulfur management

Proper design of SO₂ return to SRU important


Cansoly Refinery Sulphur Management

CARSOLV SCOT PROCESS SCHEMATIC FLOW DIAGRAM

GANSOLV CANSOLV PROCESS SCHEMATIC FLOW DIAGRAM

Cansolv Cansolv vs. SCOT

SCOT/Cansolv TGU Capital	Cost Estimate		
	SCOT Design	Cansolv 10 TPD	Cansolv 32TPD
CAPITAL COST, Million \$U ISBL	JS		
SCOT TGU/Cansolv TGU	\$8.00	\$5.70	\$6.50
Tail Gas Incin	\$1.50	\$2.00	\$2.50
Total ISBL	\$9.50	\$7.70	\$9.00
Contingency, 15%	\$1.43	\$1.16	\$1.35
Product Storage	N/A		
OSBL, 20%	\$1.90	\$1.54	\$1.80
Engineering, 15%	\$1.43	\$1.16	\$1.35
Owner's Costs, 10%	\$0.95	\$0.77	\$0.90
Total Project Cost	\$15.20	\$12.3	\$14.4

Cansolv vs. SCOT

		SCO	OT Design Case	e 1	Cansolv 10 TPD		Cansolv 32TPl
OPERATING CO	ST, \$/Year						
Fixed Costs							
Operators	85000	0	\$0		\$0		\$0
Maintenance		3.00%	\$456,000		\$369,600		\$432,000
Operating Suppli	es	0.50%	\$76,000		\$61,600		\$72,000
Insurance		1.00%	\$152,000		\$123,200		\$144,000
Local Taxes		0.10%	\$15,200		\$12,320		\$14,400
Miscellaneous		0.10%	\$15,200		\$12,320		\$14,400
Subtotal			\$714,400		\$579,040		\$676,800
Variable Costs							
Power, kW	\$0.034	80	\$23,827	107	\$31,876	185	\$55,113
Import S team	\$5.00	400	\$17,520	14000	\$613,340	28000	\$1,226,680
BFW, GPM	\$6.58	6	\$20,755	8	\$27,668	10	\$34,584
Proc. Water, C	\$1.00						
CW, GPM	\$0.10	1,400	\$73,584	2300	\$120,888	3200	\$168,192
Fuel Gas, MS	\$3.50	200	\$367,920	312	\$573,955	0	\$0
Hydrogen, MS	\$2.10	300	\$241,583	0	\$0	0	\$0
50% Caustic, '	\$200.00						
Chemicals, \$/Yr		13,000	\$13,630		\$20,000		\$42,500
Steam Credit,	(\$5.00)			17000	-\$744,770	17000	-\$744,770
Miscellaneous		0.0	\$20,237		\$55,000		\$70,000
Subtotal			\$779,056		\$697,957		\$852,299
Total Operating Cost, \$/Yr			\$1,493,456		\$1,276,997		\$1,529,099
Total Equiv. Sulf	ur, Tons/Day	10.5	\$3,773,456	10.6	\$3,124,997	32.4	\$3,689,099
Total Operating (Cost, \$/Ton Equi	v. S	\$402		\$330		\$129
Total Costs, \$/To	n Equiv.S		\$983		\$808		\$312

- **Bayer**
- **BP**
- Chevron Texaco
- ConocoPhillips
- Encana
- ExxonMobil
- Hindustan Zinc
- Marathon Ashland
- Motiva(Shell/Aramco) Premcor
- Noranda
- PetroCanada
- TotalFinaElf

- Cansolv SO₂ Recovery Process is now in commercial use
- A number of new units are currently in the design phase
- The process is especially attractive if high performance with minimum waste is required.

Cansoly where to find

Cansolv Technologies Inc.

- 8475, avenue Christophe-Colomb
- **7** Suite 2000
- Montréal, Québec, Canada H2M2N9
- **7** Tel.: +1-514-382-4411
- 7 Email: mail@cansolv.com
- http://www.cansolv.com

PROJEPRO - Projetos de Processamento Ltda.

- Rua Tocantins, 37 Bairro Cristo Rei
- **7** 80050-430 Curitiba PR Brazil
- **7** Tel.: +55-41-262-7579
- **7** Fax.: +55-41-263-3712
- > Email: projepro@projepro.com.br
- http://www.projepro.com.br