Cansolv Technologies Inc.

Cansolv[®] SO₂ Scrubbing System

Technology Review

July 2007

DS July, 2007

Cansolv Technologies Inc. BUSINESS CONFIDENTIAL

OVERVIEW

- Company History
- Cansolv SO₂ Scrubbing System Technology
- Design and Operation of Commercial Units
- Analysis of 10 Configuration Cases
- Cansolv-SRU System
- Theoretical Case of Cansolv-SRU
- Discussion

COMPANY HISTORY

- Cansolv SO₂ Scrubbing System invented in 1988 at Union Carbide
- Key employee buyout of technology in 1997
- Technology Optimization
- Startup of first three commercial units in 2002
- 1 startup in 2005
- 4 startups in 2006

CANSOLV® SO₂ SCRUBBING SYSTEM

- A regenerable SO₂ absorption process
- Similar to H₂S/CO₂ amine treaters
- Uses conventional equipment
- Aqueous diamine solvent is highly selective for SO₂

CANSOLV® SO₂ SCRUBBING SYSTEM

- Pure, water-saturated SO₂ byproduct
- A very robust, easy to operate process
- Almost zero emissions at low cost
- Patented technology

PROCESS CHEMISTRY

- Aqueous diamine solvent solution
- Buffering provides high capacity for SO₂ absorption
- Proprietary solvent has the proper absorption/desorption strength
- Solvent amine is non-volatile since it is always in salt form
- Regeneration provides pure, water saturated SO₂ as byproduct

ISOIV Gas Absorption Solutions

PROCESS CHEMISTRY- SO 2 Amine Systems

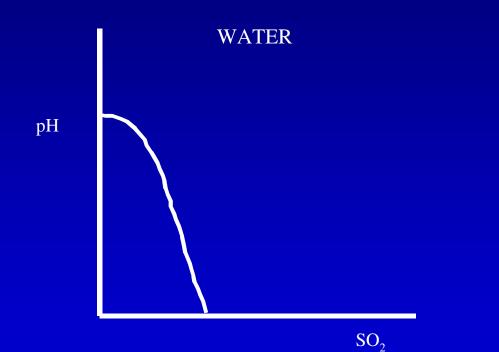
$SO_{2} + H_{2}O \implies H^{+} + HSO_{3}^{-}$ (1) $HSO_{3}^{-} \implies H^{+} + SO_{3}^{-2}$ (2)

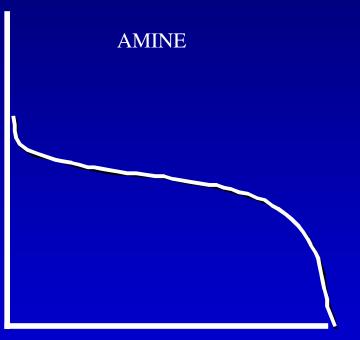
 $\mathbf{R}_{1}\mathbf{R}_{2}\mathbf{N}\mathbf{R}_{3}\mathbf{N}\mathbf{R}_{4}\mathbf{R}_{5} + \mathbf{H}^{\dagger} \boxtimes \mathbf{R}_{1}\mathbf{R}_{2}\mathbf{N}\mathbf{R}_{3}\mathbf{N}^{\dagger}\mathbf{H}\mathbf{R}_{4}\mathbf{R}_{5}$ (3)

<u>Eqns. 1 + 2</u>

Reversible hydration and ionization

<u>Eqn. 3</u>

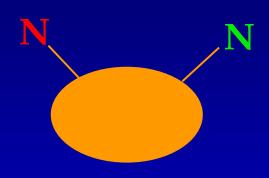

The amine acts as a buffer


Forms amine salts

DS July, 2007

Cansolv Technologies Inc. BUSINESS CONFIDENTIAL

PROCESS CHEMISTRY

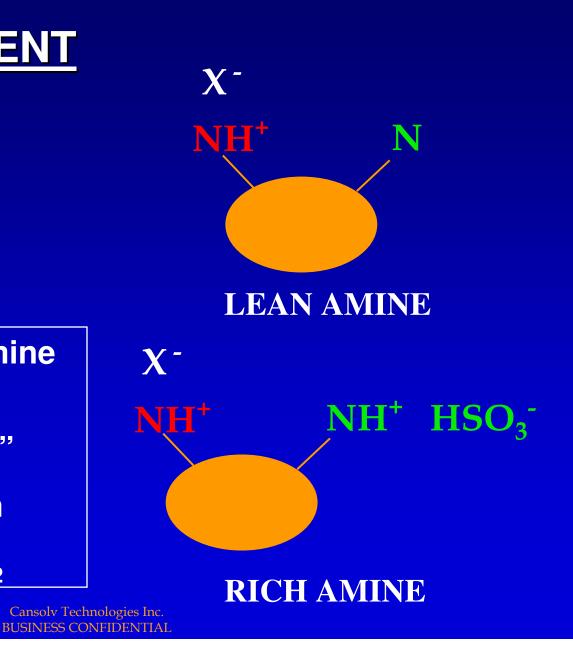


DS July, 2007

Cansolv

Cansolv Technologies Inc. BUSINESS CONFIDENTIAL

AMINE ABSORBENT

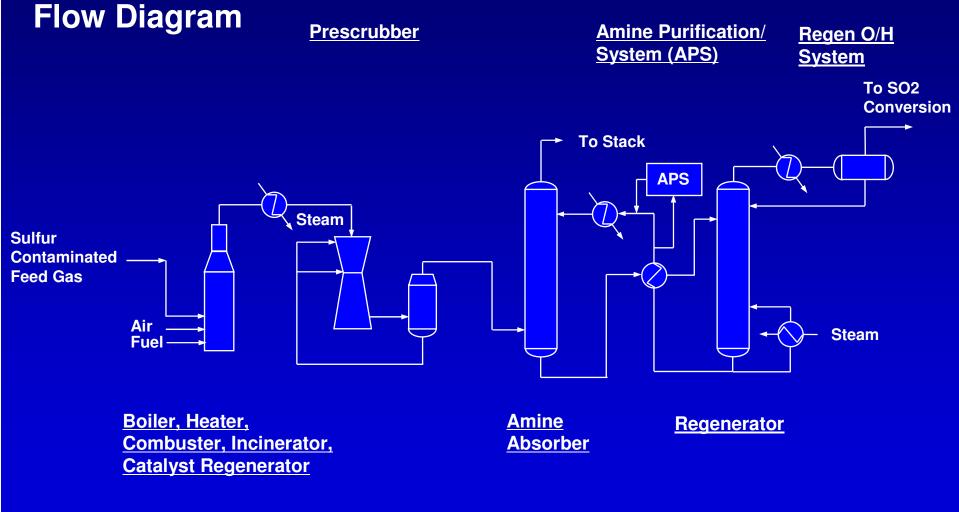


FREE DIAMINE

N : Strongly basic amine functionality

- **N** : "Sorbing nitrogen"
- X⁻: Strong acid anion

HSO₃⁻: Absorbed SO₂


AMINE ABSORBENT

The unique diamine absorbent is the key to the CANSOLV[®] SO₂ Scrubbing System technology

The first amine group is always in salt form providing absorbent non-volatility

The second amine has the optimum strength for balanced absorption and regeneration

CANSOLV SO2 Scrubbing System

PROCESS DESCRIPTION

Prescrubber

cools and water-saturates feed gas
 subcooling of gas may be required
 removes strong acids and particulates
 available options include:

 Venturi scrubber
 Candle filters

PROCESS DESCRIPTION

Absorption Column

- countercurrent contact of feed gas with amine solution for SO₂ removal
- reated gas to stack with SO₂ content <10ppmv, if desired</p>
- **7** Low pressure drop: $\Delta P < 9$ in w.c. is typical
- process is not tied to a specific tower design or supplier
- design of tower takes into account specific needs of the site

PROCESS DESCRIPTION

Regeneration Column

- stripping tower with steam-heated reboiler
- overhead condenser provides water reflux
- オ water-saturated SO₂ product
- typically utilize a structured packed column of conventional design

PROCESS DESCRIPTION

- Amine Purification System
 - HSS must be removed from a small slipstream
 - **7** ED is a proven unit operation
 - Metathesis ED in Cansolv unit does not require addition of reagents
 - The high HSS concentration and differential removal ED maximizes efficiency and economics
 - Amine in ED waste stream is low

Technology Comparison

Leading Technology
 Environment Respect
 Comprehensive Economic Sense

Cansolv Technologies Inc.

Pan

Leading Technology

High efficiency	 > 99% (up to 50mg/Nm³) Also can remove 62%-95% SO₃
Insensitive to SO ₂ from the feed gas	 From 800 ppm to 12.5% Cost has little increase with the increased SO₂ concentration Low requirement on Coal (high sulfur coal)
Energy consumption	 Very low steam pressure needs(3.5kg),low electricity consumption Use steam exhaust in Power plant Electricity + Steam as energy source
Simple process, no corrosion	 no gypsum producing device (liquid/gas phase, PH 5-6) Low pressure circulation, no abrasion, no corrosion

Superior reliability

- Scientific, concise, well established process
- Five years no shutdown guarantee achievable
- Easy to operate & to maintain
- Low maintenance cost
 - Easy to learn and to operate
- Less commissioning time

- UpgradeEfficiency
 - (CO₂ Capture)
- Increase the deSOx efficiency by increasing steam supply accordingly
- Can upgrade to Multipollutant control – CO₂ Capture

Environment Respect

- No secondary No impure Gypsum produced Landfill needs pollution Produce in great quantity No < PM2.5 particulate produced Do not produce CO₂ Amine solvent can be reused for 50,000 Regenerable cycles, about 7~10 years Amine The initial fill is only 5-10% of total invested cost 5-10% make-up annually (1% Sulfur Coal) Reduce operational cost Valuable - Acid (98%) byproducts Sulfur
 - Liquid SO₂ (99.9% dry basis)

Comprehensive Economic Sense

- Transportation Demands minimized
- No need for warehouse (Limestone, Gypsum) Transportation demands minimized
 - For 300 MW, 17 containers by train/week, 126 by truck/week
- Less Water Needs
 Liquor/Gas Ratio: 0.25 0.35 L/m³
 Mainly cooling water, 90% can be recycled if needed
- Less Energy
 2-3 % internal plant energy consumption
 1.5-1.8% from waste heat (low pressure)
- Less Plot Space Required
- Minimized land space needed for Cansolv FGD Unit
- Flexible Remote Regeneration tower
- Ideal for the retrofit power plant which has no enough space

- For 100MW, Land space needs 240M², or Cansolv Techno**75**M²+relse; 1500M².for lime-gypsum

It's possible to combine Economic and Social progress with Environment respect

We do it all the time

Cansolv Technologies Inc.

COMPARISON OF AMINES

CANSOLV PROCESS

- Diamine salt absorbent
- Absorbent non-volatile
- **7** 100% slip of CO_2
- Stainless steel metallurgy
- Corrosion allowance minimal
- No Fe S formation
- Only source of solids is feed gas
- Filter rich amine stream

CONVENTIONAL AMINE

- ↗ MEA, DEA, MDEA
- Amine volatile
- ↗ Difficulty in slipping CO₂
- Carbon steel metallurgy
- Corrosion allowance important
- **▼** Fe S formation
- Fe S precipitation and scaling source of solids
- ↗ Filter lean amine stream

COMPARISON OF AMINES

CANSOLV PROCESS

- Rate of formation of HSS high due to oxidized gas feed
- ↗ Continuous reclaimer (ED)
- ↗ Amine stable to O₂
- Amine degradation lower by factor of 2 to 3
- Operation and control similar
- Can achieve low (<10 ppmv) SO₂. Not used for H2S.
- Foaming not an issue

CONVENTIONAL AMINE

- Low rate of HSS formation
- Reclaiming not essential
- Amine not stable when exposed to O₂
- Amine degradation important
- Operation and control similar
- Can achieve low ppmv H₂S but CO₂ can be a problem
- Foaming often a problem

APPLICATIONS

Refineries

SRU tail gas cleanup and capacity expansion
Power boiler FGD
FCCU tail gas
Fluid Coker CO boiler flue gas
Co-generation
Total sulfur management

REFINERY SULFUR MANAGEMENT

Boiler	Emissions Controlled by Feed Sulfur Content
Systems → SO	or Scrubbing
FCC Regen SO Gas	2 Emissions Controlled by Feed H/T, Transfer catalyst or Scrubbing
Claus Tail	Emissions Controlled by Claus Catalyst,
Gas SO	Multiple Staging or Tail Gas Unit
Spent Acid	Emissions Controlled by Plant design,
Regen SO	or Tail Gas Unit
DS	Cansolv Technologies Inc.

BUSINESS CONFIDENTIAL

Cansolv

COMMERCIAL UNITS

- CTI has demonstrated the successful startup of the 7 initial *CANSOLV® SO₂ Scrubbing System* commercial applications
- Commercial units exceeded expectations
 - Cost
 - Removal Efficiency
 - Energy Consumption
 - Amine solvent stability
- Range of commercial applications demonstrates the versatility of CANSOLV[®] SO₂ Scrubbing System

Application	Location	Appl.	Size (Nm3/hr)	Size MW _{equiv.}	SO ₂ Content	Emissions	Phase
Sulfur tail gas	Belgium	SO ₂	18,000	n/a	1 %	<30 ppm	Oper. since 2002
Zinc smelt. gas	Canada	SO ₂	5,600	n/a	8%	30 ppm	Oper. since 2002
Acid Tail Gas	US	SO ₂	45,000	n/a	3000 ppm	15 ppm	Oper. since 2002
FCCU Flue Gas	US	SO ₂	640,000	175	800 ppm	25 ppm	Oper. since 2006
Coker Flue gas	US	SO ₂	375,000	100	2000 ppm	25 ppm	Oper. since 2006
Lead Smelt.Gas	India	SO ₂	20,000	n/a	1 to 11 %	150 ppm	Oper. since 2005
Sulfur tail gas	US	SO ₂	32,000	n/a	4%	200 ppm	Oper. since 2006
Catalyst Roaster	Canada	SO ₂	48,000	n/a	9600 ppm	150 ppm	Forecast start 2007
Copper Smelter	China	SO ₂	42,000	n/a	19000 ppm/ 900 ppm	150 ppm	Forecast start 2007

Cansolv

COMMERCIAL ZINC SMELTER

- Startup May 2002 at a zinc smelter in Quebec
- SO₂SAFETM process
- Reduce hazard of SO₂ storage and transportation
- Dissolve SO₂ in high capacity amine solvent
- Limit release of gaseous SO₂ in event of leak or spill
- Regenerate SO₂ in an automated unit

ZINC SMELTER

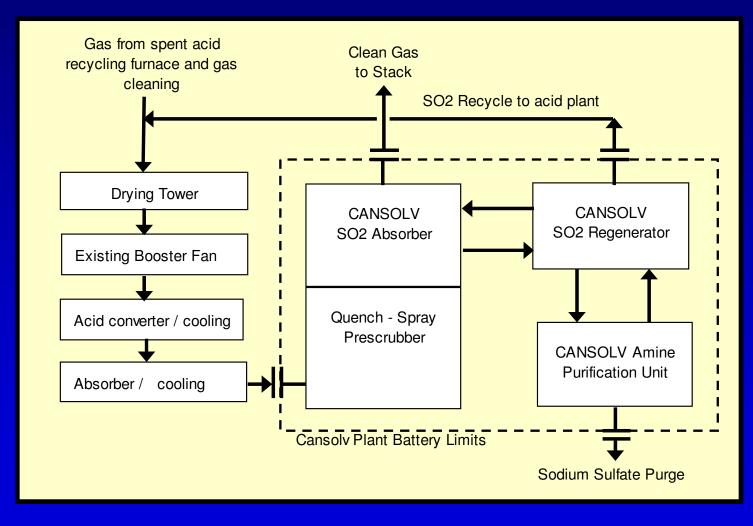
anco

Daily startup and shutdown
 SO₂ emissions < 100 ppmv
 Treat acid plant feed gas
 6-9% SO₂ content

Gas Absorption Solutions Acid Plant Tail Gas Options

- Cansolv SO₂ instead of a second absorption uncouples emissions from acid plant operation
 - Catalyst efficiency drop (lower conversion and/or screening intervals can be maximized) doesn't affect emissions
 - Acid plant operation can be maximized by maximizing gas flow without concern for emissions (ex. Conoco Phillips, Wilmington Ca)
 - All the captured SO₂ gets recycled to the acid plant maximizing SO₂ concentration and acid production

Conoco Phillips – Case Study


- Oil Refinery Spent Acid recovery plant application in Los Angeles, California
- CANSOLV replaced ammonium sulfate scrubber on single absorption acid plant
- Ammonium sulfate scrubber frequently did not meet emissions due to poor reliability
- Refinery could not sell byproduct ammonium sulfate easily during some seasons

Conoco-Phillips Case Study

- Cansolv SO₂ scrubber commissioned in 2002
- Allowed owner to extend period between catalyst screening / replacement despite catalyst performance drop
- Designed for 50 ppmv emissions, operates betweeen 15 and 25 ppmv
- Designed for 3000 ppmv inlet, 10 tons/day SO₂ capture, exceeded emissions performance with up to 5000 ppmv inlet, 16 tons/day SO₂
- Increased acid production by 25 tons / day and eliminated unwanted ammonium sulfate byproduct

Cansolv	Gas Flow (Nm³/hr)	Inlet Content (ppmv)	Emission (ppmv)	SO ₂ production (tons/day)
Designed	10,000	3000	50	10
Actual	16,000	5000	15-25	16

Conoco-Phillips Bloc Diagram

Cansolv Technologies Inc. BUSINESS CONFIDENTIAL

Canso

Conoco-Phillips

Skid Mounted CANSOLV Regeneration Unit

Cansolv Technologies Inc. BUSINESS CONFIDENTIAL

30 t/DAY CLAUS TAIL GAS UNIT

- Startup May 2002 at a chemical plant in Belgium
- CANSOLV® SO₂ Scrubbing System

DS

- 30 tonne/day SRU with CANSOLV Tail Gas Unit 7
- Treat flue gas from an incinerator receiving feed from 7 SRU unit tail gas and waste (high S tar source)
- 11,000 Nm³/hr at 14,300 ppmv (1.4%) SO₂ inlet 7
- **7** SO₂ concentration cycles between 6,000 ppm and 11,000 ppm
- Process cost less than conventional tail gas treating
- Operation of plant has been stable and better than design Cansolv Technologies Inc. Iulv, 2007 **BUSINESS CONFIDENTIAL**

30 t/DAY CLAUS TAIL GAS UNIT

Partial List of Performance Guarantees and Results

Performance Guarantees		Actual Performance	
SO ₂ in Treated Gas	\leq 122 ppmv dry	84 ppmv average;55 ppmv optimized	
Steam Consumption	\leq 20 lb/lb SO ₂	 11 lb/lb SO₂ average to date; 7 lb/lb SO₂ optimized 	

- High average steam due to deliberate over-circulation of the solvent
- Current steam consumption 20% less than design
- Degradation of the amine solvent is less than expected

SO₂ emissions less than 60 ppmv, as low as 10 ppmv

DS July, 2007

INDIA - LEAD SMELTER OFFGAS

- Startup December 2005
- Smelter batch operation
- Load leveling:
 - vary amine circulation to absorber
 - constant regeneration rate
 - delivers constant SO₂ flowrate to acid plant
- Gas Flowrate 16,000 SCFM
- Inlet SO₂ concentration vary from 1,000 ppmv to 12%

Gas Absorption Solutions India - View of Absorber and Regenerator

External steel structure provides support for thin wall SS towers for wind and seismic loads.

Cansolv Technologies Inc. BUSINESS CONFIDENTIAL

INDIA - LEAN AND RICH CANSOLV DS TANKS

Large lean and rich tanks provide load leveling feature for SO₂ conversion process.

DS July, 2007

Cansolv Technologies Inc. BUSINESS CONFIDENTIAL

DELAWARE - FCU CO BOILER FLUE GAS

- Startup September, 2006
- Refinery application: Fluid Coker CO Boiler
- Gas Flowrate: 280,000 SCFM
 - Absorber diameter: 26 ft
- Inlet SO₂ concentration: 2,000 ppmv
- Advantages of Cansolv:
 - Minimal liquid effluent & no solids handling
 - Very low SO₂ emissions (25 ppmv)
 - SO₂ product routed to SRU

DELAWARE - FCCU CO BOILER FLUE GAS

- Startup December 2006
- Refinery application: Cat Cracker CO Boiler
- Gas Flowrate: 435,000 SCFM
 - Absorber diameter: 32 ft
- Inlet SO₂ concentration: 800 ppmv
- Designed for 5 years run-time
- Advantages of Cansolv:
 - Minimal liquid effluent & no solids handling
 - Very low SO₂ emissions (25 ppmv)
 - SO₂ product routed to SRU

WASHINGTON - SRU TAIL GAS

- Startup July 2006
- Refinery application:
 - Common system for 2 SRU tail gas trains (2 x 100 LTPD)
- Gas Flowrate: 12,500 SCFM (6,250 SCFM per SRU)
- Inlet SO₂ concentration: 4% on acid gas bypass

WASHINGTON - SRU TAIL GAS

- Implement Cansolv-SRU design
 - Bypass 10% acid gas to oxidizer
 - Recycle SO₂ product to SRU
- Advantages of Cansolv-SRU design:
 - Increase total SRU capacity by 12.5% (25 t/day)
 - Eliminate O₂ enrichment & 3rd Claus stage
 - SO₂ emissions < 140 ppmv
 </p>

<u>CHINA GRASS ROOTS COPPER ANODE</u> <u>SMELTER</u>

- Under Construction. Startup year-end 2007
- Designed to treat Copper Anode Furnace Effluent
 - Feed flow varies +/- 14% of Design
 - ∧ SO₂ Concentration varies from 900 ppm to 19,200 ppm
- Advantages of Cansolv design:
 - Recycles SO₂ back to acid plant instead of generating massive amounts of waste

Cansolv Gas Absorption Solutions

<u>CHINA GRASS ROOTS COPPER ANODE</u> <u>SMELTER</u>

DS July, 2007

Cansolv Technologies Inc. BUSINESS CONFIDENTIAL

Skid Mounted Supply

Cansolv® SO2 Scrubbing System can also be provided modulated into pre-fabricated, skid mounted sections for easy transport and installation. Pump and exchanger skids can be made small enough to satisfy the transport limitations and towers and pressure vessels can be made to a maximum of 5 meters in diameter to respect load limitations.

Four Skid Components (example case):

- Absorber Skid
 - Absorber Diameter: 2.4 meters
- APU Skid
 - 5 kg/h HHS removal capacity & filtration to 1 micron
 - Skid size: 5200mmL × 2000mmW × 3500mmH
- Equipment Skid
- Regeneration Skid
 - Stripper Diameter: 0.5 meter
 - Skid size: 4000mmL × 4000mmW × 16000mmH

Cansolv Technologies Inc.